If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14=-16t^2+26t+11
We move all terms to the left:
14-(-16t^2+26t+11)=0
We get rid of parentheses
16t^2-26t-11+14=0
We add all the numbers together, and all the variables
16t^2-26t+3=0
a = 16; b = -26; c = +3;
Δ = b2-4ac
Δ = -262-4·16·3
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-22}{2*16}=\frac{4}{32} =1/8 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+22}{2*16}=\frac{48}{32} =1+1/2 $
| 2x5=14 | | -2m+3+m=78 | | 17=+e | | 36=-8-(-7x-9) | | -8(8-x)=4/6(x+10) | | Y=7.5x-2 | | 5y-14=48 | | 2(3x-2)=5x-10 | | 7/23x-14=70/19 | | 3(4x+1)=11x+6 | | 2(5x-12)=9x-10 | | 2/3+b=4/7 | | 219=-9z-8(-6+6z) | | F(-8)=x^2-4x+3 | | 3p–5=4 | | 4(2x+2)=7x+6 | | 116=(23x-6)+(x+22) | | 16/x=179 | | 3(2x-4)=5x+4 | | q*3=3/7 | | 8(k-6)+58=2(4k+) | | n=6912 | | 116=(23x-16)+(x+22) | | 15+5x=-2x+1 | | 29-5=4(-3a-9) | | 116=(23x-16)+ | | 19.9-x=17.6 | | 1.25x-3.5=x | | 3.9t-9.6t+8.9=-25.3 | | -8=3+3b+4 | | 46.5=-16t^2+93t+4 | | 63-k=9 |